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PREFACE

The recearch reported in this Memorandum is a part of a continul:
invesrtigation of the sifects of ground shock on underground structures.
This study was prompted in general by z questioning of the accuracy of
free-fleid stress measurements, and in particular by an interest in
the effects of gags deslgn on these measurements. Most of the current
free~field g:vess data available are derived from pa icle-velocity mea-
surementg; very few are obtained through actual stress gages, a long-
recognized inadequacy.

1t is therafore the purpose of the Memorandum to investigate the

feagibilizy of an omnidirectional stress gage and to provide thecreti-

cal background for the design and use cf such a device,
Doctor ¥. C. Moon 1s presently affiliated with Princetcon Unilversity

and ia also a comsultant to the RAND Corporaction.
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SUMMARY

This Memorandum presents an analysis of the transient response oi
the pressure in an embedded elastf~ inclusion due to an incident com-
pressional wave. Tt rapresents a continuing effort at RAND to evalu-

ate transducer diffraction effects on ground stress-wave measurements.

Included is an outline of a design for an omnidirectional pressure

transducer with a response capable of being interpreted in terms of
the theoretical solution presented in this Memorandum,
Both the frequency response and transient behavior are treated.

It is found that the pressure or mean stress at tihe center cof the in-

clusion will be insensitive to the curvature of the inciden: wave.
The primary source of distortion between the inclusion pressure and

the free-fleld pressure in the incideant wave is internai refiections

in the inclusion., An early time analysis reveals that these can be

minimized by matching the acoustic impedance (product of density and
compressional wave speed) of the inclusion with that of the matrix.
An estimate of the time for these reflections to decay due to radia-
tion "damping' is found to depend on the impedance ratio.

Two methods are presented for cobtaining the total pressure re-
sponse due to a ncaperiodic incident wave. The fi. t uses the calcu-
lus of residues and the high-frequency response to sum the resulting
infinite series. The second method proceeds by solving the inverse
problem: to find the incident wave pressure in terms of the inclusion
pressure. This latter method is presented in the form of an integral
equation for the inclusion pressure which enables an exact explicit

golution to be found between successive reflectiuas.
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SYMBOLS

a = radius of {nclusion
B = ratio of bulk moduli (I = B /B,)

c = ratio of compressional-wave speeds (c - cdl/cdz)
F[ ] = Fourier transform

jn(x) = spherical Bessel functions

k = ratio of compres.lonal-wae speed to shear-wave cneed
(k = ¢,/¢
(k = c /e

L[ ] = Laplace transfor.
P = pressure at center of inclusion
P = pressure {n incident compressional wave
Pn(x) = Legendre polynomisls

t = time

o = normalized frequencv (a ° ma/cdl)

y = negative {maginary part of normalized frcguency
= ratio of shear medull (U
s = ratio of mass densities (o s1023

T = time normalized with respect to half transit time (7 te o fad

i = real part of normalized frequencv

w = circular frequency
Subscripts
1 = matrix material

2 = inclusion material




L. INTRODUCTIGN

rmong the many effects associated with a nuclear-explosion-induced s
ground shock that must ve considered in the design of a survivable svs- [ }

tem {8 the magiitude of the stresg {n the ground shock., In fact, most

design specifi-ations of a hardened svstem usually call for structures

to withatand a certain stress level. Thus the abilities to predict and

to measure free-field siress are of prime importance in anv nuclear ef-

fects tests.

Most of the existing stress gages are devised primarily for static

- (1) , &
measurements and may not be applied tco dvnamic stress measurement.

Thers nave been many recent studies attempting to produce better stress
gages capable of measuring high-intepsitv ground stres:z, but usually
because of thelr complex geometric shape, a precise analvsis of the
wave-transducer interaction i{s {mpoesible:; hence, the Interpretation

cf data {s in doubt.ﬁl) A strain-sensitive transducer of simple shaye
and censtruction i{s needed, with a response capable of being analv-ed

bv the methods of the theorv of elastic wave propagation and Ot frac-

A transducer to measure pround stresses shonld have the following

characteristics:

1. The strength o withatand high stresses
2. Elastic preperties to produce measurable strafns

V.0 Fame of dngrallation and recoverabil

—

G.  Ingensitivity te orienta-ien
5. Small rise time, minirized overshocot, and large i{nternal fran-
sient Jdecav

o, Compati{bility with standard auxtifar. equiprment

The transducev we prupose to examive {s an elastic sphertoal (o~

clusicn to be buried {n the ground, and sensitive, through sirain gages,

to *he mean -treay or pressure at {ts origin.  soech a8 device {s insen-
sitive to its angular orlentation botn hecause of {tg svometry and he-
cause of the scalar nature of the mean stress or pressure. A< our first

task we will examine the respense charasteriszics of such an inclusion.




A

meet th.2 requirement of high strength, the material of the spherc

will most likely have elastic properties different from those of the
y

ground material. Hence, diffraction =ffects are likely, and their ef-

fec. on the response of the transducer should be examined. Toward this

end we treat the problem >f the diffraction of a transient compressicnal

pulse by an elastic isctropic spherical inclusion bonded to an infinite

elastic isotropic matrix. Then some design criteria are presented for

the selection of the material, size, 4 respcrse times >f a spherical

strain transducer.




1I. FPEQUENCY RESPONSE GF AN ELASTIC INCLUSION

The study of the response of an elastic inmclusion has received
much &attention in the last decade. These studies have dealt mainly

- /
with harmonlc compressional waves.(z’z) (4,5)

Recently, however, Mow
has examined the transient behavior of a rigid inclusion and has ccr-

related the separate displacements of the inclusion and the ground.

He found that ‘he inclusion and free-fileld displacements could diverge
at earlv times even for =squal densities, satisfying an essential cri-

terion of fleld resting. Similarly the stresses in an elastic inclu-

sion are expected to differ in both magnitude and phase from those ir

the free field. The extent of this divergence and the factors th-t

will minimize it are discussed below.

BASIC EQUATIONS

(3)

Since the harmonic sclution has been discussed elsewhere, we
will nnly briefly review the relevant equations.

We suppose both the inclusion and matrix to he homogeneous, isc-
tropic, linearly elastic mediums in which the usual stress-strain re-
lationships held. For each material there are twe elastic constants

and two wave speeds: a compressional or longitudinal wave c,, and a

4

shear or transverse wave gt
Outside the inclusion we 1magine a source of either plane or spher-

ical harmonic compressional waves with a displacement potential given by

iw(z—cdlt)/cd1

of = e plane wave (1)
im(R-cdlt)/cd1

S Soe

¢ = spherical wave (2)

u = Vi (3)

where z 1s an axial coordinate (Fig. 1), R is the distance from the

source to the field point, and u is the displacement. The potentials
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Fig.1 — Geometry of spherical inclusion




represented by Eqs. (1) and {2} give the displacement in a medium vith-
out an inclusion. The presence of the inclusion will scatter waves into
the medium and refract waves into the Inclusion. The scattered and re-
fracted fields will contain both compressicnal and transverss waves.
Inside the inclusion the motion is of the form of standing waves

or vibrations, and the refrscted displacement potentials take che

form,(B)
\
u= 0+ T x (e 3¥/20)
- - - , ]
& E: ann(w /CdZ) Pn {cos @) (&)
n=0
J o= - 3 N N i
§ gg% Dan(wr/_sz) Pn {cos 8}
/

where jl(a) are spherical Bessel functions and Pn(x) are Legendre poly-

T
(6

nomials.

AVERAGE AND CENTROIDAL STRESSES AND DISPLACEMENT

The induced stresses are derived from Fq. (4) using the generalized

(3)

Booke's Law and have been tabulated by Pao and Mow. The stresses and

displacement- depend on all the excited modes in the inclueion. However,
if the inclusion 1s being used as a transducer, then knowledge cof the
stresses at one point will be sufficlent. The most logical point to ex-
amine is the origin.

(6)

Using the small-argument limit for the spherical Bessel functions,

n
a

jn(a)q+5 1.3.5 ... (2n + 1)

the d. placement and stresses at the origin become




-

w - =2 (0. - 2k
u 3 Zkle) (5)

cdl 1
1 = -P 4+ 2§
zz

XX yy

= . = - w
P = -1/3 (Txx + Tyy + 1) B CO r {6)

- <_.<£_)2<?_2__ RZD)
5 \eg, ) \ 37 K%,

where k2 = ch/c82 is the ratio of compressional-wave speed to shear-
wave speed in the inclusion. Thus the lisplacement at the origin de-
pends only on the first dilatational and shear modes. The mean pres-
sure F at the origin depends only cn the symmetrical modes, and the

maximum shear stress 35/2 depends solely on the vibratorv modes asso-

ciated with 02 and DZ'

Similar remarks apply “or the ave.ge displacement or motion of
the center of mass of the inclusion and average pressure over the en-

tire sphere, i.e.,

‘ W 1 ]
<> -, (C—-) & [ Iy %
a2 2
23, (a,)
1'72
<P>* <-B,V-u>= -B. <—‘—"-——>—-—— c (8)
2 2 \¢y; a, 0

wvhere a, = Ta = ws/cd2 and 82 - ms/cs

5"
It is evident thst the behavior of either the stresses at the or-
igin or the average mean pressure depends only on the frequency responsge

of the coefficients CO’ C2. and D2. These coefficients are detevranined




from the boundary conditions. For a bonded inclusion, the boundary

conditions require continuity of stress and displacement, i.e.,

\
-
) IR S VAN ¢)
r r r

ROFIROIING

e G
L onr=a (9)
L8) (O ()
rr T rr
(s) (1) _ _(r)
Tre * (rO - Tre

where s, I, and r indicate "scattered,” "incident,” and "refracted,”

respectively.* For our purposes, it 1s sufficient to know that C0 de-
pends only on the first and third boundary conditions of Eq. (9). That
is, the pressure at the origin or the average pressure cver the entire
inclusion does not depend on whether the tangential dispiacemernts or
shear stresses at the interface are continuous. Thus the same value

of CO will result 1f "slipping” boundary conditions of zero shear stress

on the interfsce are applied.

X
NOTNE TN
r T r

L8 (D () (10)

rr rr rr
> onr = a

_(8) (1)
"ro * Tro

T(r)

rt

~/

The induced pressure at the center of our transducer inclusion will

thus be ingensitive to the bonding or grouting as long as the ratrix

These equations are given In a more explicit form in Ref. 3.
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mekes normal contac: with the sphere. For this reason, we study only
the frequency and transient response of the mean pressure at the ori-

gin of the inclusion, The coefficient C0 is given by the expression‘3)

o o fa) 1 -
CO Noiae B.c_,cal(cx + i)jo(ca)
1 -1y . -
- [ii—TiiQ-(a + 1) + iaz]jl(ca) 1 (11)
ik
1
where
,
®0 plane wave
NO = ﬁ
ia ad
SO a h0< a) spherical wave

-

where ! is the distance from the wave source to the inclusion center,
and ho(x) is ti~ zero-order spherical Hankel function.

Let us next examine the consequences of choosing either a plane
or a curved incident compressional wave. The mean pressure due to the

incident weve i3 given in the twn cases by

s
P = -B V'u\I) = -B v2¢(” .o 30 (12)
c 1 —- 1 2 2
c at
ai
where ¢ satisfies the wave equation.(6) Substituting Eqs. (1) and (2)
into the above gives
f¢0 plane wave (13a)
. 2
P = B [— 4
c 1<Fd1>
s da, (ad herical wave (13b)
L S0 7 "o\ s spherical wav

where ho(x) - eixlix.
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(6)

Comparing Eqs. (13a) and (13b), we find that the relationship

between the incident pressure and inclusion pressure 1is the same, i.e.,

s 4 ~ia
P(a) = P_ %-;‘—‘z 5= = AP
>(14)
H(o) =4 =L a(a + 1)), (Ga) - | 228 (4 1) + 1224, (Fa)
C O -L-Ika 1 J
1

We need no longer distingirish between spherical or plane waves, since
the response is identical in both cases. The same can be sald for the
digplacement and shear stress 3. In fact, as long as a quantity de-
pends on only one mode, the relation between its value Inside and its
value in the free field remalns the same whether the incident wave is
plare, spherical, or generally dilatational. However, for a quantity
such as T, the axial stress which depends on the :eroth and second

modes, this is not true; i1.e., if

T (r

1
22 L Q) = Tzzgp(m) plane wave

—_— - I n 1
Tzz(g = 0) .zzgs(w) spherical wave

then gp(m) 4 gs(w). This gives further impetus to studying the mean
pressure P rather than, for example, the axial stress T,

Examining the frequency response for the mean pressure at the vr-
igin, we observe that at low frequencies, if.e., o =+ 0, a« * 0

jO(En) » 1, jl(zx) s wa/3

= - = T (15)
L

€ 3 - Z
1

l=-TR¥ Y]

This limit vields the same pressure as the static problem of a sphert-

cal elastic incluston embeddacd In an elastic matrix with hvdrostatic
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(7

pressure Pc at infinity. The ratio of output to input P/PC is a
constant at low frequencies and can be called an amplification or gein
factor AO. The gain factor is presented in Table 1 for different in-

clusion materials in a granite matrix. At high frequencies

3
P(a) ~ Pc Ei%l— Eiu(pc cos ca ~ 1 sin (n:cx)—1 (16)

Qe

The product pc is called the impedance ratio, and its departure
fvrom unity gives a clue to the nature of the refl.ction of dilatation
waves from the boundary separating two media. If pc = 1, the gain is
again cons.iant, vhereas if the impedance ratio departs from unity, the
denominator has periodic maxima and minima. Thus the gain exhibits
resonance peaks with frequency, or the internal reflections reinforce
one another at certain frequencies. The resonances at large frequency

are easily found: for oc > 1, €a = nv/2, and n an odd number,

(P/P max = 5(3)/8 (17a)

and for pc < 1, ca = ax/2, and n an even number,

(/P ua: = 5] (17b)

The frequency reeponse curves using the exact relation Eq. (l4)
are shown in Figs. 2. through 5. They show the resoi.ances at the proper
frequencies when o is large. Values obtained previously check the com-
puted maxima of these curvee.

An {deal transducer is one for which the gain or amplification
factor is independent of frequency. Thue for meassurement of elastic
waves in granite, aluminum or titanium would make a better transducer
than plastic or lead, for example (Figs. 2 through 5). Furthermore,
we can cay that unless the matrix and inclusion transducer are ''matched”

(f€ = 1), the internal reflections can magk the incident signal.

: .
For discussion of Cacem A and B {in Fig. 2. see page 20 and Table 2.
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IIT. TRANSIENT RESPONSE OF AN EMBEDDED ELASTIC INCLUSION

DIRECT PROBLEM

If the incident signal or pressure is nonperiedic, the inciusion
pressure at the origin may be obtained as an inverase Fourler transfo..
of the product of the gain A(a) (Eq. (14)) and the transfoyrm of the in-

%)

cident pressure, i.e.,

P(r) = 1 f.«, AGF[P_(1)]e % da

> (18)

>

FIP_(0)] f Pc(t)eimdr

- J

where Pc(r) would be the pressure at the origin in the absence of the
inclusion. The time 1 ig normalized by the time the incident wave

transits half the inclusion, i.e., a/cdl, and o i{s a nondimensional

frequency.

Suppose PC(T) has the form

(
0, T <0

Pc(r) =
Pof(r), t>0
where f(t) -+ e_AT as T + », In units of the half transit time a/c

dl’
the pulse arrives at the inclusion surface at 1 = - 1. The time for a

compressional wave tc transit the distance "a" in the inclusion mate-

rial is €. We should then expect the response

P(x) = O

f-‘rl<'1+zo
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Tc show that this is the case, the calcuius of residuec {s used
to evaluate Eq. (18) and to show that all poles ~{ the integrand lie
in the lower half of the complex plane, (See Fig. 4.) 1iIn the exami-
nation of the function A{z} in the com, lex a-plane, we ncte that the

gingularities are determined by:

Real H{a} = O ]
> (19)
Im H(a) = 0 J

It can bte shown that the roots of Eq. (19) always come in pairs,
i.e., 1f o 18 a root, —a* is also a root.+ To show that the imaginary
part of the rcot is always negative, we note that as real a » =, where
a = 0 ~ 1y, the equations for the roots of Eq. (19) take this form
(where H{a) is given by Eq. (14)):

cos cQ(PT cosh Ty -~ sinh Ey) = 0

gin €Q(cosh €y - ©¢ sinh Ty) = 0

Thus the roots are determined by

Case 1: 7¢ <1, sin ¢Q = 0, cQ = nn/2, n even
(20a)
tanh EYO = pc, Y =Y,
Ca 2: pEc > 1, cos & = O, cit = nn2, n odd
(20b)

tanh Eyo = 1/pc

For high frequency, the radiation damping coefficient y approaches a
positive constant {f € ¢ 1.

+Astetisk ind{cates conjugate.




Path for ++ 1 - £ <0

— §

Path for r+ 1 +c >0

Fig.6— Path of integration in complex plane for the transient problem
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Since I~ a < 0, there are no pocles in the upper half plane, and
substitution of Eq. (14, for A{a) into Eq. (18) reveals that P{t) = 0
for T+ 1 - ¢ <0, which agrees with our initial supposition.

For Im a < 0

-{(1-C)
AQ) ~ e i(1-ca

and P(1) for (1 + 1 -c > 0) is given by the sum of the residue of
A(a)F[f} in the lower half plane.

For the special case of a step function,

£=eT, A+ 0
it follows that
rO, T < -1 +g
P(t) =+ < (21)
-{y,+1Q,) (1+1)
PA-EImie ) 1> -1 +¢
o0 T 3 HY ' : "
\ B =1 (aj)

where the sum is over the conjugate roots of H(aj) = 0 and the property
H'(-a*) - —H’*(u) has been t-ken into considerati"n.+ For large 3} the
roots take the form given in Eq. (20).

The first term in Eq. (21) is, to within a factor, the incl!dent
pressure. The second is a transient pressure due to diffraction and
internal reflections. The maximum rate of decay of the transient is
proportional to e—yoT where VO is given by either Ea. (20a) or Eq. (20b).
The normalized "damping' time is ]/yo. For a granite matrix and alumi-
num inclusfon this time is 1.5 half transit times, whereas for a plastic
inclusion, l/yO = 30 half transit times.

The complete solution may be obtained by using the first few rocts

of H(a) = 0, rfound numerically until y, =

J Yo The remaining terms in

f
Prime sign indicates derivative.

14,




i
3
!
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the series, using the approximation Eq. (20) for aj, constitute a Fou-
rier series and may then be summed analytically.

As an illustration, consider the cases for which the frequency re-
sponse 1s calculated in Fig. 2 (the upper curve 1s close to that for
an aluminum inclusion in a granite matrix). In these cases the densi-
ties and compressional velocities are matched, but the shear speeds of
inclusion and matrix are different, i.e., ¢ = 1, U ¢ 1. The first few
roots and residuex for each case are presented in Table 2, We cbserve
that the magnitudes of th- third and fourth modes are about one-half
of the first symmetric vilration mode of the inclusion in the matrix.
The relative importance cof the higher modes was alsc found by Skalak

(10)

and Friedman in studying the reflection of an acoustic step wave
from an elastic cylindrical shell. We note also that the real parts
of the roots came close to the peaks in the frequency response curves
(Fig. 2).

The pressure response to an incident compressional step wave at
the center of an aluminum inclusion in a granite matrix is given by

P(1) = P0(22/9){1 + (1.301)e'1'251(’+1)51n[

3.532(1 + 1) + 91}

+ 0.8465)e L30T

in[6.839(r RSN

—_—

-~1./19(r+1)8

+ (0.6827)e 1n{10.04{1 + 1) +6.] + ...}

3
for v > 0.

This curve is plotted in Fig. 7, using only the first three modes.
(Note that since pc = 1, we cannet use Eq. (20) to analytically sum the
rest of the terms in the series.) Even though the series converges
slowly for any given time, the exponential radiation damping terms en-

sure that the transient will Se negiigible in a few transit times for

this case.
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Table 2

CALCULATED ROOTS AND RESIDUES FOR THE TRANSIENT RESPONSE
OF AN INCLUSION TC AN INCIDENT-WAVE FIELD

H(a) = a_leian
n
n a = - iYn an On
Case A:2 P =c=1, L= 2.0, ki = 3.0, kg = 6.0
1 3.532 - 1.251 1] 0.5324 | 7 - tan ! 0.5785
2 6.839 - 1.540 1| 0.3463 —tan ! 0.7803
3 10.04 - 1.719 1| 6.2793 | n - tan" 0.8568
Case B:° o = ¢ = I, U= 0.5, ki = 6.0, k2= 3.0
1 1.381 - 1.201 1] 1.258 v + tan ' 0.8828
2 5.144 - 1.431 1; 0.4087 tan © 1.225
3 8,407 = 1.664% 1] 0.3071 | » + can ! 1.116
4 11.61 - 1.793 1] 0.2582 tan”} 1.073

Ysee Fig. 2.
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1.4 I I ! .

Approximation using first three
/ .
/ spherical modes only

“-.___~Nd

]O ‘—"—'*-ﬂﬁ'-———-—--r—i—'—‘—-——-—-—-ﬂ———- s et
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o Incident pressure
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S 0.8 < ;
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N
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i pF=1,c=1, n=2,
k? -3, k% = 6, (See

02— T . Fig.2, Case A for —

frequency response )

0 ||
J 0.2 0.4 0.% 0.8 1.0 1.2

Nommalired time 1 - ’Cdl a

Fig.7 — Transient response of the pressure in an aluminum inclusion in a granite
mntrix due to an incident compressional step wave
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LARGE-TIME AND SMALL-TIME RESPONSE

Let us now examine the behavior of Eq. (18) for v + = or 1ts
equivalent a + 0. For this case A(a) + A(0) = AO, a constant, and the

remaining integral is the inverse of F[f]

P(1) » AOPC(T + 1) (22)

TM

(It should be noted that the phase of the right-hand term is arbitrary
for 1 + =,)
For small times we examine Eq. .14) under the limit a » =, for

which Eq. (18) beccues

-3 @ -{a(1+]1)
N O bt [ e F{f)da

B 2n J__ (T cos ca - i sin Ca)

(23)

This may be inverted {f we rewrite Eq. (23) in the form of a Laplace

transform, setting o = is

| A= s(t+1)L{f]ds
P(r) = p§ S L O = (24)
0 B 2=/ _ (FT cosh cs + sinh cs)
or
-3 e g {1+1)
-/ c\ 1 e L{f)ds .
P(y) = P = h € e £ 2
{7 OD(B) sinh Ty, 373 ‘[1. Cosh c(s + YO) 24a)
where r.nh éyo « 1/5¢, ¢ > 1 and
-3 Sdw g (1+])
oiey - p s &) bz, L e L[f]ds
(v) = Pyp 255 cosh &y oy /_1_ sinh €(s + v,) (24p)

vhen tanh EYO = D¢, i€ < 1. The {ntegrale in Egs. (24a) and (24b) can be

-2z

evaluated by expanding ei: her 1l/cosh z or 1/sinh z {n powers of e
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from which we see that Fq. (24) is a series of modulated step functions
separated in time by 2Tn., These represent reflections inside the in-

clusion.

Integrals of the form Eq. (I4) may be fournd in a table of inverse

Laplace trahéforms.(6’11) Finally we have, for small-time response,

Case 1 ("soft" inclusion): oc =~ 1

-3 o -(2n+l)cy
P(1) = Py3 L9772 stnn v, LD e 0
B =)
n
f{r +1 - (20 + Dclult + 1 - (2n + 1)c] (25a)

Case 2 {"hard"” inclusion): 5¢ < 1

-3 * -(2n+1)Cy
- - SC)_ L= < 0
P(1) POO - 2 cosh v ::)e

f{: + . - (2n + Dclul: + ! - (20 + 1)¢] {25b)

where u(1) i{s the unit step function.

These expressions are applied to a few examples as shown in Figs.
8, 9, and 10 for the case of an {ncident step pressure. For (ase 1
(FC > 1) the {nclusion acts as an 'underdamped’ transducer (Figs. 9 and
10) and as an "overdamped" transducer for Case 2 (5t < 1) (Fig. %).
The damping {s due, of course, to the fuct that part of the reflected
waves {8 radfated out of the inclusion i{ntce the matrix.

I[f we try to extend Eq. (25) for large ti{me for the case of the

step input, we obtain {n both cases

where wve have used the f~ct that
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w© -~ (2n+l)Cy
2 e
n={

Thus, ! :r the step input the short-time asymptore given by Eq. (26)
using the approximation Eq. (23) differs from the long-time approxima-
tion Fq. {22, by a constant. This difference will be discussed shortly.
The gbove factor represents the asymptotic maximum {(minimum) in the fre-
quency response for the case p¢ < 1 {pc > 1).

For the cagse pc > 1

2 cosh Eyoe -1 - @

-By . 7 =2B
Ty~ ) ) ZCYO
18 a measure of the amount of overshoot for early time.
We see that this formulation has the advantage over the Fourier

representation Eq. (18), since for a given time Eg. (25) contains a

finite number of terms. In the latter expression l/EyO again plays

the rele of a "transient damping” time.
For the case of equal impedances pc = 1, we return to the expres-

sion Eq. (18). The smail-time expression is given simply by

22
P{(t) = &P f(r+ 1 -3)
B 0

The small-time solution is exactly analogous to the penetration of
a compressional wave into an infinite acoustic barrier of material dif-
ferent from that of the matrix and normal to the incoming wave. For
that problem, if the acoustic impedance ratlo is unity, there are no
reflections, but rather a delay in the signal, which is what we found

previously.
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IV. THE SOLUTION OF THE INVERSE PROBLEM

While the gcal of the amalyst is to predict the output or response
of a transducer given the input, the object of the experimentalist is
the reverse. That is, the latter wishes to solve the inverse problem

*
of finding tte input given the output of the transducer.

THE METHOD OF FOURIER TRANSFORM

Returning to Eq. (14),; we write an expression for the free-field
pressure PC in terms of the mean pressure P at the origin of the in-

clusion

,’m RELICSY

1
27 J F{P)

oot

Pc(r) =

O

x b—% (-1)(a + )3, (éa) - [i%(%—ﬁl (« + 1) + iazjljl if-gl da
1
27

One may readily perform this inversion if the integral form of
jn(z)(e) is used, i.e.,

1 -
IR § / icat
jG(ca) 2 e dt

1
Jy(€a) = = 2 | e (3T - 1)dt

and 1f
31,0 = 215(0) + 3,(0)]

The inversion is performed by switching the order of integration

and making the necessary assumptions of integrability. Thus

®
See Ref. 11 for an example from quantum mechanics,
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-1
‘ B ) )
lc(x)-—ﬁ[ A [g{i (T-1~ct)+P(r-1—ct):|dt

}.OC
Bl e g,
P R N PR ct
-1 uk
1
2
+~P(~c»1»E:)] -i—f—(r -1 -ct) (l-tz)dt
J ar*

Integrating by parts and collecting terms, the above expression assumes

the form
P (1) = §,- [(1+=1P(t—1+E)+(1-—1)P(r-1-6)
¢ 20 - P pe
z
1\ 1 1
- ( - g) 7 }[E P(x -1 ~ s)dsJ
=. - g
+ B_\l—gm“—%f (82 + 25 - EP{T - 1 - 8)ds (28)
%) ﬁkl -C

Note that if U = C = § = 5 = 1, we obtain the identity Po(r) = P(1).
For long time or v - 1 >> 23, we may remove P(t - 1 - 8) from the in-

tegrands and

B[ 1 _4(-3) . - 1) = A lp¢r -
Pc(r) = [33 3 ﬁkz c]P(r 1) AO P(t - 1) (29)
1

which is vhat we obtained for the direct problem, Eq. (22).
(5)

It i{s interesting to note that Mow found an exact expression

for the inverse problem of & rigid sphere. However in that problem the
incident displacement Uc wag found in terms of derivatives of U as well
a8 an integral. Equation {28) involves only weighted integrals for the

incident stress. This operation could be built into an electronic "black




box. The recorded signal P(t), considered as an input, could be de-
layed and integrated electronically to prnduce an output proportional
to the original incident pressure. The operations in Eq. (28) thus de-
code the transducer output.

The solution of the inverse problem for the center pressure was

-)
possible because C. (w) in Eq. (6) was a linear combination of spheri-
cal Bessel functions. No such simple relation results for the s.ear
stres. S, Eq. (6), or the displscement of the center of mass <U>, Eq.

(7).

THE METHUD OF SUCCESSIVE REFLECTIONS

Having obtained an exact expression for the incident pressure PC(T)
in terms of the center pressure in the inclusion, we can then look at
Eg. (28) as an integral equation for P(r) in terms of the incident pres-
sure, We will in faci _how that by this method an exact solution for
P(t) can be obtained by a finite time, step-by-step algoritchm.

To L.,in, we shift the time by

Tl 1T ~1+c¢ and

so that Eq. (28) takes the

1

Pc(r +1-¢c) = ~E_ [(1

2(8)2
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We assume that the center pressure is zero until v, = 0, or that

1

the incident pulse arrives at the origin at time - 1 - ¢. These

conditions imply the following:

P(Tl) = Q Tl <0
Pc(rl) =0 Ty < 1 -t
P(r1 -2c) =0 Ty < 2¢
FO
j P(n)dn = 0
11—25

Since ¢ is the half transit time in the inclusion, the center of
the inclusion does not see an internal reflection until time 1, = 2c.

Thus for 0 < 1, < 2,

T
- -1
. L - B - 1
Fc\r +1-¢) = - [c(l + fﬁ)P(Tl) + jO K(Tl - n)P(n)dn] (30)

1 2(2)3
wvhere
(1 -y - - -2
K(rl ~n) = Al;;igl‘ﬁrl -n- c)2 + 2(x1 -n-2¢)-c¢ ] - (1 - %)
1

This is an integrsl equation of the Volterra kind. Since K(Tl - n)
is a polynomial, Eq. (30) may be solved by successively differentiating
it with respect to Ty using the identity

A 1
4 (1, - POV = KO)P(r)) + f 2 N(r, - MP(n)dn
drl . 1 1 70 Brl 1 /

This results in an nrdinary linear differential equation with con-
stant coefficients for P(rl). with initial conditions determined at each

differentiation of Eq. (30), i.e.,




B, +1-9) = B 3 [5(1 + %)'é'ﬁl» + WO)E(r))

2(%)
+ x’<0)é(11> + }(’(0)?(11_)] (31)
with
- B 1 +
P(1-2¢2) = 1 +=JP) (31a)
c 2(6)2 ( oc)
: - 3 |- 1\: .t +
PA-%)= [c 1+ =]P(0) + X(O)P(O )] (31b)
c 2(6)3 ( co)
iic(l ~ 3 » B - [E (1 + -_-l-)ii(o*’) + K(0)P(0") + x’(o>p(o+)] (31c)
2(8) e

For our problem

Ko - 2B o g

ukl

¥ (0) = Zil_%J;l
ukl
The solution consists of a particular solution determined by

Pc(t1 + 1 - ¢) and a transient solution of the form

3 1B Y
Plr) = 2 ae ) 0 <1y <2 (32)
=1

where the roots of the following algebraic equation are represented

by B, :
Y 5y
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efL+ %)(1.3)3 + KO0)(18)2 + K'(0)(4B) + W'(0) = O (33)

The three constants aj are determined by the initial conditions, Eqs.
(31a), (31b), and (31c).

Once the solution is known in the interval 0 < ™ < 2&, the solu-

tion may be extended into the interval 2c < 1, < 4C, since P(r1 - 2¢2)

will be known, ac will

1

f _ F(n))((r1 - n)dn

Tl-2c
A comparison between the solutions obtained in Eq. (21) (method
of residues) and Eq. (32) (method presented here) reveals a differenc.
in the number and magnitude of eigenvalues present in each. In Eq. (32),
there exists a finite number Bj; in Eq. (21), there 1s an infinite num-

ber a This can be explained by the fact that the two forms of the

solution are valid over different time domains. Equation (21) is valid
for all time and must contain information about the periodic discontin-
uities in pressure due to reflections. The method discussed here ob-
taing a sclution, Eq. (32), valid only between reflections (2nc < 5 <
2(n + 1)c) and continuous in these intervals as long as.ﬁc is continuous.
We may note that this method may be applied to the conversion of

certain integrals of the form

iat

1 Toe” H(a)da
) = 2 j_m N
Y ans“(a)
ne-M

vhere

H(a) -f et (t)de

—

and the gn(a) are periodic functions and bounded. One must slso assume

N
that 2; angn(a) = () has no roots on the real axis.
n=-M
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V. SUMMARY OF RESPONSE CHARACTERISTICS

We now recapitulate the main results of the various methods used
to analyze the response of an embedded elastic spherical transducer.

1. The pressure or mean stress responsge at the center of the in-
¢luslon will be independent of the orientation of the inclusion relative
to the wave fron* and will only depend on the spherically symmetric modes,
as shown in kq. (6).

2. The pressure response at the center of the inclusion will not
depend on whether the incident wave is plane or spherical. The stress
Tzz, however, will be sensitive to the spherical character of the wave
front.

3. The higher free spherical vibrational modes of an embedded in-
clusion are characterized by commensurable frequencies and radiation
damping independent of frequency.

4, The rate of decay of internal reflections will depend on the
impedance ratio p¢ and will have a characteristic time YBI given by Egs.
(20a) or (20b) (see Table 1).

5. The pressure response for si1ll time {s characterized by behav-
ior which is either "underdamped” (Eq. (25a)) or "overdamped.' For the
tormer, the overshcot above the small-time asymptote is given hy
(E)ZC_ZEYO/B for an incident step wave (see Table 1.

6. The inverse problem may be solved for the incident pressure in
terms of the pressure at the certer ¢f an embedded inclusicn, from which
an exact solution may be obtained for the direct problem by a reflection-
by~reflection methcd. Tiis is not possible for either the displacement
of the center of mass (except for a rigid inclusicn) or the shesr stress
at the center.

Furthermcre, we will make some comments cn the difference between
the small-time asymptote snd the large-time behavior for a step input.
When the incident wave encounters the inclusion at 1 = -1, the inter-
nally transmitted compressional wave at normal {ncidence to the surface
will reach the center first at v ~ = - 1, raflect at the leeward surfdce.
and return to the center at 1 = 37 - 1. The expreasion Eqs. (25a) or

(25b) essentially only treats t'e res;nse froe this normal-incidence
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\ Normalized pressure P/PO

-

Forpe ™1
L 1 i i i J
-1 0 | 2 3 4 5

Fig. It — Corjacture on the qualitative response of cn embedded inclusion
o.e to an inciden: compressional step wave




wave and neglects the shear-mismatch-induced waves (i # 1) when the in-
cident wave 1s oblique to the spherical surface. Thus the reflections
in Figs. 8, 9, and 10 probably do not give the tota® respcnse after one
or two reflections, except 1f ¢ << 1. If we may be permitted to con-
jecture, the tctal response of the pressure :t the cente- of the inclu-

-

sion for a step input may resemble Fig. “. for ¢ ~ 0(1). The small-
time overshoot [ and large-time overshoot may be useful as guides to
designing =uch a pressure trar sducer or interpr.ting tne results of an
actual test.

Firally, we should mention that actuil materials have internal
triction or damping properties which were neglected here. To irclude
these properties, the elastic moduli can be replaced by the compiex
counterparts as a function of frequency in Eq. (14). Material! atrenu-

ation of sound waves would be important in a transducer made :f plastic

e.g., polvethylene (Figs. 4 and 9), and in fact might be desirable.
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VI, ON Ths DESIGN OF A STRESS-STRAIN TRANSDUCER

At (pa bheginning of this Memoizndum we ouvtlined the important
characrerigricg that a strress-strain transcucer should have. In the
gubsaquent sections we arslyzed the trans.ent response of a spherical
pressure cransducer and discovered the parameters that affect the - _-
sponse characteristics. e propose here to describe one possible deo-
sisn for such a triz.scucer, which may serve as a point of reilerence
for all apparent areas of field testing, with the pcssiple exception

of ground-shock testing.

OVERALL DESIGN CONCEPT

The ~voposed ctress transducer will sense the pres_:ve in a ground-
shock environment bv measuring the d*° arion, or av vage sirain at
the center of a spherieal elastlc Incaiusion b means cf strain gages.
The sphere is to be honded to a cviindrier. sample of the ground mate-

1.4l and grouted in a bore hole (Fig. 127. r.2 spherical shape and

b

)

choise of average strain will resuiz {n a tran.ducer wsenzitive o
orientation relative to tie wave {ront .. rvature of the wave front.

This unorthodox sha, 2 may create some fabr.ceflon problems. Sev-
eral a._ornatives are avallab?:. The sphere may be spitic into hemi-
spheres, the gages instal'=d, and the sphere fastened or cemented vo-
gether. This, howz2ver, might destrcy th. spherical symmectry of {ts
response. If the inclusion material has a low melting point or can be
so’'difled from the liquid state at low or room ta2mp ratures (e.g.,
epoxy), the guges might then be directly embedded in the sphere before
golidification. This method. although attractive, will usually mean z
lsrge mismatch {n acoustic impedaace nr between lnciusien and matrix,
and hence large internal reflections awnd ~ long ¢ransient decay time.
Under certain r'rcumstances a largs impedance miamatch might be pre-
ferred, especially in high pressure shocks where the pre.sure in the
inclusion would be attenuated bel~w the fracture limit by t.e choice
of a soft material such as plastic or lead.

A third alternative, the one preferred here, fe tc drill mall

radial access holas through the center and to cement semiconc ctor
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strain gages along the axis of the cylindrical hole several hole diam-
eters away from the center, thereby avolding stress concentration ef-
fects due to the tri-hole intersection. If the access-hole diameter

is small compared with the inclusion raaius, diffraction effects shoul

o

be smalli. Frequency res onse, however, will be limited by the acoustic

impedance ratio and inclusion radlus rather than the gage-hole diamecer.

MATERIAL, STRENGTH, AND SIZE KEQUIREMENTS

To minimize the spuiicus transients in the transducer which are
due to internal reflections, the inclusion materizl should be chosen
8c that its szcoustic impedance is as close as possible to that of the
ground matrix. For example, in a granite matrix {Table 1) aluminum
woul. be the best choice for inclusion - terlal to minimize overshoct
and reflections.

In regard to the required strength of the transducer, it should
be remembered that the pressure at low frequencies i{n the inclusion may
be higher or lower than that in the frees field. Fcr a granite matrix
P/Po(w ~0) = 1.4 for a steel inclusicn, P/PO = 1.3 for titanium, and
?/PO = (.81 for magnesium. Thus, while a magnesium inclusion can sup-
port a matrix pressure 24 percent above its fracture gtreugth, a steel
inclusion can support a matrix measure only 72 percent of its fracture
strength.

The size of the device is limited by the seismic bore hole, the
size of the strain-gage access holes, and the desired frequency recgponse.

There are two "figures of merit" for the transient response. One
{9 the rise time or time to transient decay due to a step input, the
other is the frequency rasponse as determined from the pressure ratio
versus wave number or frequency curves (Figs. 2 through 5. The rise
time or tranelent damping time is Independent of the si.. and depends
only on the acoustic impedance ratio of matrix and inclusion.

The frequency regponse is usually defined by the frequency at which
the gain A(w) = P/PO is up or down 3 dB (dB = 20 logloA) or vhere A =
1.41 or 0.71. This frequency will depend on the radius of the inclu-

sion. For a lead inclusion (4-in. dliameter) in a granite matrix, the
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gain or pressure ratio P/P_, wiil be up 3 dB when the frequency is

arcund 10,000 cycles/sec. OFor & titanium inclusicn the frequency re-
sponae 1s around 0 - 47 kc/sec for a 4~in. diameter inclusion. This
3-dB figure may bz a little misleading, since the whole response for
titanium never varies more than about &4 dB (Fig. 5), and for aluminum
(upper curve Fig. 2), never more than 3 dBR. It is far easier to extend

the tfrequency ra2sponse by matching the acoustic impedance than by msking

the inclusion gmaller.

STXAIN GAGES AND ELECTROMAGNETIC INTERFERENCE

The sirain sensors for this transducer are semiconductor strain

(12)

gases ., Thesd plezovesistive cylindrical elements would be cemented
it palrs aleng each of the thiree mutually perpendicular axes of the ac-
cess holes (Fig. 13). The gages would be mounted on each side of the
center of the gphare at a distance of four hole diemeters away from the
center to avoid stress concentration effects near the center, Each pair
would be connected in series, and the three pairs then series-connected
inte a toral of =1ix gages forming one arm of o wheatstone bridge. The
output of the bridge would be proportional to twice the dilatation;
herice the pressure at the center of the sphere.

If transient electromagnetic radiation is a problem, the gages may
be isclated from the gphere which, if a conductor, will check the in-
trusion of elecrromagnetic radiacion Intc the interior fi.ough the skin

effect. All bur quasistatic fields would be shilelded from the strain

gages.

FABRICATION AND INSTALLATION

The amal: size of the gage-access holes will, of course, present
gsome fabrication problems. However, the uase of specifally designed
tweezers and probes and a low~powered microscope should make the prob-
lem tractable., Small-diameter enamel-coated lead wire should be threaded
thiough the holes before installing the gagea. The gages can be connec-
ted .n pairs and installed as such, a2 that all the leads exit from

only one access hole. With the leads soldered as one arm of a bridge,
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only two leads need be carried back to a ground station into a bridge
through a coaxial or shielded cable. If electromagnetic radiaticn is
not s problem, one of the leads mav be grounded to the sphere 1tself.
An exploded diagram of the installed transducer is shown in Fig.
12, Rather than simply grouting the sphere in piace with loose ground
material, we suggest a cylindrical sample of the ground be obtained if
possible and split into two smaller cylinders. On one of the ends of
each cylinder a hemispheric hole would be machined to fit the sphere.
Through one of the cylinders, a small axial hole would be .eeded for
the transducer cable. The two halves would then be cemented (with some
epoxy, for example) to the sphere. Ihe transducersphere in the cvlin-
drical matrix would then be lowered into the seismic bore hole and grouted.
There are of course many other factors to consider in properly de~-
signing ar instrumentation system. Some of these, such as the auxiliary
electronic eavipment, are beyond the scope of this study and the expe-
rience of its authors. However, no proper evaluation of the problems
can begin without a specific device at hand with concrete sizes and
specifications; we have attempted to pruvide these number. and proper-
ties for those with intimate knowledge and experi nue in field testing.
The overall advantsge of this design is not lower cost or ease of
installavion (though that may be true), but that its shape, internal
construction, and Iinstallation allow the response and field results to
be directly compared with a theoretical gnalysis. The output of the
trangducer c be systematically decoded te determine the pressure in

the incident wave field.
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